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Abstract--This paper reports an experimental analysis of the contact resistance in heat transfer 
between stagnant mm,¢my and a solid metal surface. It is shown experimentally that there is a very 

small amount of contact resistance between chromium-plated copper and pure mercury. 

R ~  Cet article ¢kka'it une ~tude exp~'ximentale de la r~hdstance de contact dam la transmission 
de chaleur entre du ~ au repos et une surface solide rt~,aflique. On montre exp~rimentalement 

que la r/~stance de contact entre cuivre chrom~ et mercure purest t r~  faible. 

~ D l e s e  Arbeit behandelt eine expefimentelle Untecmchung des flmlnischen 
K o n t a k t w i ~  zwischen ruhendem Quecksilber trod einer festen M e t a l l o ~ .  Es zeist sicb 
aus den Versuchen, dass ein besonders ldeiner Kontaktwiderstand zwischen ehromplattiertem Kupfer 

und reinem Queeksilber besteht. 

Alwtract~B HacTomttel~ CTaTbe npxBo~rrc~ eKcnepnMesTanb]It:e ;~aaHMe no conpoTsS~eHRm 
M e ~ y  mlep~,/og pTyrbxo a Tnep~olt MeTa~aaqecKo;t noeepxaocTbZO e npouecce Ten~oo6MeHa. 
Ha ocxoemtmt orn~ratzx ~ m a ~ x  nou~umaeT¢~, qTO TepMKqec~oe conpoTae~ea~e Mew,~y 

IIJIaCTE[]IOI~ H8 XpOMOBO~ Me~ I4 qgc'rofi pTy'rl, lO Ma.rl.o. 
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cross-sectional area (m2); 
equivalent cross-scetional area of 
mercury mass defined by equation 
(2) (m'); 
heat-transfer coefficient 

(kcal/m t hr °C); 
Bessel functions of  the first kind and 
zero- and first-order, respectively; 
thermal conductivity (k~I/m hr °C); 
heat transferred per unit time 
(kcal/hr); 
radial distance from axis (m);  
radius of  copper cylinder (m); 
inner radius of  Dewar vessel (m);  
temperature (°C); 
clearance between solid surfaces (m); 
vertical distance (m); 
variable in Bessel function; 
Nusselt number; 
Peeler number. 

* Present address: Showa Denko Co. Ltd., Kawasaki, 
Japan. 

Subscripts 
c = contact surface; 
Hg ---- mercury; 
w = difference between two solid walls. 

INTRODUCTION 

IN XEcE~r years, great interest in the use of 
liquid metal as a heat-transfer medium has been 
stimulated. Martinelli [1 ] developed the analogy 
between heat and momentum transfer in the case 
of liquid-metal heat trausfer, and derived a 
complicated theoretical equation. This equation 
was simplified by Lyon [2] as follows; 

N u  ---- 7"0 + 0"025 P e  o's (1) 

On the other hand, various investigators have 
accumulated experimental data, most of  which 
unfortunately do not agree with Lyon's equation 
and are 30--40 per cent lower than the values 
predicted by the equation. Considerable num- 
bers of  experimental and theoretical investi- 
gations have been done in order to give 
~plamLtions of this d ~ n ~ .  
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Most of these investigations can be classified 
as follows: 

(a) Thermal contact resistance between liquid 
metal and a solid surface (experimental study). 
These are completely covered by MacDonald 
and Quittenton [3]. 

(b) Gas entrainment phenomenon (experi- 
mental study). This was discussed by MacDonald 
and Quittenton [3] and Chelemer [4]. 

(c) Direct measurement of eddy-diffusivity 
ratio (experimental study). Isakoff and Drew 
[5], Brown et  al. [6] and Mizushina et  al. [7] 
studied this subject. 

(d) Modification of momentum transfer 
analogy, assuming special models in heat- 
transfer mechanism (theoretical study). Deissler 
[8] and Lykoudis [9] developed different 
theories, respectively. 

(e) Vorticity-transfer theory (theoretical study). 
Cope [10] discussed this subject. 

As mentioned above there might be many 
reasons for this discrepancy, among which, 
however, only the thermal contact resistance 
between liquid metal and a solid metal will be 
studied experimentally in this paper. Mercury 
purified chemically was used as a liquid metal. 
Chromium-plated copper, pure copper and 
nickel plate were used as solid metal surfaces. 

EXPERIMENTAL APPARATUS AND PROCEDURE 

The experimental apparatus is shown 
schematically in Fig. 1. A and B are copper 
cylinders 20.5 cm long and 3.7 cm in diameter. 
The two end surfaces of A and B were polished 
on a surface plate to make them as flat as 
possible and then all surfaces were carefully 
plated with chromium. The thickness of the 
chromium deposit is less than ~ ram. In order 
to measure temperature distributions in the 
cylinders, fourteen copper-constantan thermo- 
couples were inserted in radial direction and 
fixed on the centre line of the cylinders. Thus, 
1-85 cm from the hot junction of each thermo- 
couple lead is left in an isothermal region. 
Furthermore each thermocouple lead is wound 
twice around the cylinders. A melamine resin 
coating protects them from corrosion by 
mercury. The axial locations of the thermo- 
couples are shown in Fig. 2. After the thermo- 
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FIG. 1. Experimental appm'atus. 

couples were fixed in the cylinders, the whole 
cylinders were put in a 0.01°C thermostatted 
bath and the thermocouples were calibrated. 
C is an electric heater to supply heat to the 
upper end of A, and E is a water jacket to sub- 
tract heat from the lower end of B. D is an 
electric heater which serves as compensation for 
the heat loss from the main heater C. The 
cylindrical surfaces are doubly insulated ther- 
mally with cellulose-melamine resincoatingand a 
Dewar vessel F. The clearance between A and B 
can be freely varied with a screw at the top of 
cylinder A and measured accurately to _~ mm by 
a cathetometer. The parallelness of the two 
surfaces was ascertained by measuring the 
clearance between the surfaces at three different 
points in every run. End surfaces of cylinders 
A and B being in contact with mercury, were 
carefully cleaned physically with benzene or 
ethyl alcohol before each experimental run. The 
space between A and B was filled up carefully 
with 99.999 per cent pure mercury. Not even a 
small bubble of gas was allowed to remain in the 
space. In some series of runs, a copper plate or a 
nickel plate was inserted in the middle of 
mercury layer between A and B at the beginning 
of runs. In such cases, the plate was supported in 
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a suitable distance with the needles fixed at the 
lower end of .4. Since the thermal ins, flation was 
nearly complete, the full amount of the heat 
supplied to the upper end penetrates the whole 
system downwards without appreciable loss. 
This was confirmed by uniformity of  the axial 
temperature gradient in the copper cylinders. The 
amount of the heat was measured as electric 
power to heater C with a voltmeter and an 
ammeter. The temperature distribution in the 
cylinder at the axis of cylinder was measured by 
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FIG. 2. A typical measurement of the axial tempera- 
ture distribution in the copper cylinders A and B. 

thermocouples and a potentiometer to 0.01 °C. 
A typical measurement of the axial temperature 
is shown in Fig. 2.* 

Every measured value was recorded after the 
steady state was reached. The end-surface 
temperatures of,4 and B were obtained by extra- 
polation. After each run, the clearance between 
.4 and B was measured as fast as possible to 
prevent the effect of thermal expansion or con- 
traction of the cylinders. 

* It  may he interesting to compute, as a check, the 
thermal conductivity of the COl~er from this measure- 
ment. The value obtained was 274 kcal/m hr  °C, which is 
lower than 330 kcal/m hr  °C of the generally used value. 
The greatest cause of  this discrepancy might he an 
inpurity in the copper. 

ANALYSIS 
Suppose that  there is something like a boun- 

dary "layer having resistance to heat transfer 
between the stagnant mercury and the solid 
metal. The layer could be an absorbed gas layer 

~ Solid wall 

~Tem~mtum 

FIG. 3. A schematic representation of the temperature 
profile in the vicinity of the contact interface. 

or a metallic oxide film or any other con- 
taminant. At steady state, the following equations 
are given (see Fig. 3): 

In mercury 

q = ,4Hg. kHs. (At/Ax)It| (2) 

In boundary layer 

q ---- A t . h e .  (At)~ (3) 

and 
(at)n= ---- (At). -- 2(3t)c (4) 

From equations (2), (3) and (4) 

(At). (ax) 2 
q = Ang.kng + ~  (5) 

Since the thickness of the boundary layer 
(Ax)~ is very small, 

(Ax)n~ = (ax)w - 2(ax) .  - -  (,~x)w (6) 

As shown in Fig. 1, the cylindrical mass of 
mercury has a cross-sectional area larger than 
those of  the copper cylinders. The former is 
1-37 × 10 -a m s and the latteris 1.075 × 10 - a m  s. 
Thus, the heat flux curves slightly outwards in 
the mercury layer. Therefore, A~,  in equation 
(2) should be an equivalent cross-sectional area 



142 T. MIZUSHINA, S. IUCHI, T. SASANO and H. TAMURA 

consistent with the representation of equation (2) 
and thus is affected by the geometrical condition. 
By solving a heat conduction problem, An, for 
this case was given as 

A n , =  1-075 × 10-a(1 + 24.8/ixH,) (7) 

where An, and / ixn ,  are in square metres and 
metres, respectively. The calculations are shown 
in appendix. Hence, if the values of (/it),. q and 
(Ax),~ or (/ix)~,, are measured, one can obtain 
the values of h~ and kH, by a graphical method. 
When the value of (/it)./q are plotted against 
(/ix)n,/Anm the intercept at ( dx)nt /An,  = 0 gives 
2/(A~h~) and the gradient d(zlt./q)/d(/itH,/AH,) 
gives 1/kn,. 

When a thin metal plate is inserted in the 
mercury layer parallel to the metal surfaces, two 
contact surfaces are added. Denote the contact 
area of the inserted plate A~', and its contact 
heat transfer coefficient h~', thus 

At~ (/ix) 3 2 

q An. .  kng + ~ - c  + A c' h{ + 

" ] -  (/IX)plat° (8) 

A~' . kplato 

In this case the intercept at ( 3 x ) ~ / A n ,  = 0 gives 
[2/(A.hJ + 2/A{h{  + (/ ix)ptm/(A{.  kpme)]. As 
the last te~u can be calculated and the first t e ~  is 
determined by the experiment without inserting 
a plate, one can determine the resistance 2/(A~'h~') 
between the mercury and the inserted plate. 

RESULTS AND DISCUSSIONS 
The plots in Fig. 4 show the experimental 

data of thermal contact resistance between pure 
mercury and chromium-plated copper as well as 
the case with a copper plate inserted. However, 
only the data of the former case was correlated, 
since the data of the latter scattered considerably. 

1. The contact resistance between chromium- 
plated copper and pure mercury and the thermal 
conductivity of  mercury 
A least-squares line was put through the data 

as shown in Fig. 4. From the magnitude of the 
intercept and gradient, two u.uknown values 
of 2/(A~h~) and ka .  in the equation (5) were 

computed as 2/(A~hJ = 0.009 hr °C/kcal and 
kn,  = 8.46 kcal/m hr °C. 

Since Ac = ~ r~ = 1.075 x 10 -3 m:, the ther- 
mal contact resistance 1/h~ = 0.48 × 10 -6 m 2 
hr °C/kcal. 

2. Runs in which a copper plate is inserted 
In order to examine the thermal resistance 

between copper and mercury, the runs in which 
a copper plate is inserted were also performed. 
The experimental results are plotted in Fig. 4. 
In this case the last term in equation (8) 
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Fro. 4. The ~L~ : r~m~  dam of the thermal resis- 
tance (dt)Jq vs. the clearance parameter. 

(dxa~/AaJ 

is negiigible, since the thickness of the plate is 
very small (about 0.1 ram) and the thermal 
conductivity of the copper is much larger than 
that of mercury. If a correlating line is obtained, 
the intercept would correspond to twice the resis- 
tance between chromium-plated copper and mer- 
cury plus twice the resistance between copper plate 
and mercury. However, the data of these runs 
are not so different from the case of no copper 
plate insertion, but the former are slightly lower 
than the latter in thermal resistance (4t),~/q. 
It may, therefore,be said that there is no thermal 
contact resistance between copper plate and 
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mercury and even that the decrease of the 
contact resistance between mercury and 
chromium-plated copper occurs owing to the 
wetting effect by copper slightly dissolved in 
mercury. 

3. Other series of  runs 
In addition to the data plotted in Fig. 4, several 

other series of runs were performed. Without 
the insertion of a plate, two other series of runs 
were performed and the following results were 
obtained, respectively: 

1~he = 2"15 x 10 -6 m s hr °C/kcal, 
kH+ = 8.8 kcal/m hr °C 

I/he = 1-88 x 10 -6 m s hr °C/kcal, 
kHe = 8.25 kcal/m hr °C 

In another run, a thin nickel plate was inserted 
in the mercury layer. The increase of thermal 
contact resistance 2/(A ~'he') was 0.024 hr °C/kcal. 
Since 

Ae'= 1.35 x 10 -a m s, 

l/he' = 1.62 × 10 -6 m s hr °C/kcal. 

A nickel surface seems not to differ from a 
chromium surface in its character so far as the 
behaviour of contact with mercury is concerned. 
If the thermal resistance between the copper 
base and the plated chromium film is appreciable, 
the contact resistance between mercury and the 
chromium-plated copper should be larger than 
that between mercury and the nickel plate. Since 
this is not the case, it may support the assump- 
tion that there is no thermal resistance between 
the copper base and the plated chromium film. 

Thus, the magnitude of the thermal contact 
resistance 1~he between pure me~ury and a 
chromium or nickel surface, is in the range of 
0"48 to 2"15 × 10 -6 m t hr °C/kcal. 

Now the effects of various probable errors on 
the value obtained for the thermal contact 
resistance will be discussed. 

(1) Since the accuracy in measuring the clear- 
ance between the surfaces is about ~ ram, the 
resulting error in the value of the interfacial 
resistance can be as high as 

( ~  x 10-a)/7.9 ---- 0.6 x 1 0 4 m t h r  °C/kcal. 

However, as the probabilities of overestimation 
and underestimation can be assumed to be equal, 
a least-squares proceduremay decrease the error. 

(2) It is difficult to determine the positions of 
the thermocouple junctions accurately. How- 
ever, the thermocouple holes were drilled care- 
fully and the error in determining the position of 
the jtmction might be about 0.2 ram, which 
corresponds to an error of 

0"7 x 10 -e m s hr °C/kcal 

for the contact resistance. 
(3) As the thickness of the chromium deposit 

is less than t~o ram: its thermal resistance 
is substantially negligible. 

(4) If a part of the heat supplied to the upper 
end of the cylinder was lost out of the system, 
one should estimate the magnitude of ~lt/q 
slightly larger, and so also the value of the contact 
resistance. However, since the temperature 
gradient in the copper cylinders was substantially 
uniform, this effect may be small. 

(5) As the thermal contraction of the copper 
cylinder during the measurement of the clearance 
is inevitable, one might possibly overestimate 
the clearance. If the temperature descent of the 
copper cylinder during the measurement was 
1 °C, the contraction of a copper cylinder of 20 
cm could reach 0-003 ram, which results in an 
error of 0"4 x l0 -e m s hr °C/kcal in estimating 
the contact resistance. 

Consequently, the possible magnitude of 
accumulated errors in the contact resistance may 
be between 10 -6 and 10 -s m ~ hr °C/kcal. 
Therefore, it may be concluded that there is a 
thermal contact resistance between a chromium- 
plated copper surface and pure mercury a few 
times 10 -6 m s hr °C/kcal at most. 

The heat transfer coefficient of mercury flow 
inside a round tube of 2 cm inside diameter at 
Peclet number = 1000 can be calculated by 
Lyon's equation (1) as h = 5000 kcal/m s hr °C. 
If the value of the contact resistance between 
mercury and metal wall is assumed to be 
1 x lO -s m s hr °C/kcal, the value of the heat 
transfer coefficient will decrease to 4750 keal/m = 
hr °C. On the other hand, the experimental 
heat tmmfer e,c~qFxfient at the same condition is 
about 3900 kcal/m s hr °C. TherefoR, the 
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thermal contact resistance plays only a part  o f  the 
role in the discrepancy between theoretical 
prediction and the experimental data of  heat- 
transfer. 

Average temperature of  the mercury layer 
was about  40°C and the value of  ka¢ at this 
temperature is given as 7.9 keal/m hr *C by the 
Liquid Metals  Handbook [I1], while Gehlhoff 
and Neumeier [12] gives 10 keal/m hr °C at the 
same temperature. Experimental values of  the 
present work are in the range of  f rom 8-25 to 
8.8 keal/m hr °C, which is slightly larger than the 
data of  Liquid Meta ls  Handbook. This may 
partly be due to the small amount  of  heat loss 
out of  the system from the upper cylinder and 
partly due to the heat transferred between the 
mercury and the cylindrical wall of  the cylinders. 
I f  the former is taken into account, the estimated 
q must decrease and / I t /q  must increase and 
consequently kill  must decrease, while the latter 
makes the apparent  magnitude of  A , f  somewhat 
larger and thus the value of  kHs smaller. 

CONCLUSION 

There is a small amount  of  thermal contact 
resistance of  the order of  10 -5 m = hr °C/kcal 
but less than a few times of  that between a 
chromium-plated surface and pure liquid mer- 
cury. I ts  magnitude is, however, not so large as 
to explain the whole amount  of  discrepancy 
between the theoretical prediction and the ex- 
perimental data of  heat transfer. 
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APPENDIX 

Mathemat ical  Estimation o f  Ar~g 
As represented schematically in Fig. 5 the 

complicated heat flow in the mercury layer can 
be analysed as a problem of  the steady-state 
heat conduction in a cylinder which has the 
following boundary conditions: 

x-----O 

x = ~ I x  
x = O  

r = r =  

x=Ax 

x=O 

r < r  1 
r ~ r z 

r= > r > r 1 
r= > r > r z 

/ ix>_ x >__ O 

V ~  ~1 . 

t ~= t o 
t ,-- 0 (9) 

Ot/Ox = 0  (10) 
Ot/Ox = 0 

~t/~r = 0 ( t ] )  

Copper solid 

Iam~ury 

Copper solid 

Flo. 5. A simplified model of heat conduction 
occurred in the experimental apparatus. 
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The equivalent cross-sectional area of the 
mercury, mass is affected by the geometrical 
condition and takes a value between 

rrr~ = 1"075 × 10-SmZand~rr~ = 1-37 × 10-am ~ 

corresponding to the magnitude of  the clearance. 
It is beyond the present attempt to solve this 

boundary value problem quite rigorously. How- 
ever, it is not  difficult to solve the problem, if 
the temperature distribution at x = / I x  and x = 0 
can be assumed reasonably instead of  the 
boundary condition (10). The writers assumed 
the temperature distribution as follows: 

x = ~Ix t = f ~  (r) (12) 

wherefa(r) = to (0 < r < r0 

= to -- Cto [1 -- (2/~r) sin -~ rdr]*, 
(rl < r < r~) 

x = 0 t = A ( r )  (13) 

where f~(r) = 0 (0 < r < r~) 
= Ct o [1 - -  (2/~r) s in  -1 rx/r], 

(r a < r < r~) 

A correction factor C in the above equations 
should be determined so as to satisfy the follow- 
ing equation: 

Q = Q' (14) 

where Q = I i ' 2 ~ r k r ( O t / O x ) . f f i o d r  (15) 

Q ' =  Ii '  2rrkr(St/Ox)x.xdr (16) 

The basic differential equation for the steady- 
state heat conduction in a cylinder is 

~ t / ~ x  ~ q- (1/r)~t/~r q- ~ t /Sr  s --  0 (17) 

The boundary value problem denoted by 
equations (17), (9), (11), (12) and (13) can be 
separated into two somewhat simpler boundary- 
value problems whose solutions can be super- 
posed to yield the solution of  the original 
problem. Consider the following two boundary- 
value problems: 

* When a circular reoon (r ~ rO of the surface of a 
semi-infinite solid is kept at a constant temperature to and 
the other region is insulated, the surface temperature 
distribution is given as to (2/-) sin -x rl/r. 

~P'tl/~X ~ -~- (1/r)Otl/Sr + ~ t l /Sr  ~ = 0 "~ 
t I :fl(r) (at x = / I x )  ~ (18) 
t l  -- 0 (at x = 0) / 
8tl/Sr = 0 (r = r2) 3 

8=t=/Sx 2 + (I/r) ~t2/~r + ~=t2/~r 2 = 0 "~ 
t= = 0 (at x = / I x )  
t~ = A ( r )  (at x = 0) (19) 

J ~t~/Sr = 0 (r = r 2) 

The analytical solutions of  the two problems 
defined by equations (18) and (19) respectively, 
have already been solved and are described in 
standard text-books of  heat eonduction.t  

= 2  ~'Jo(AL, - r/r2) sinh (A~x/r~) 
tl r[ , ~ [ J o  (An)] 2 sinh (AnAx/r2) 

I ' l ~ O  

2 ~ " J o ( , ~  r/r2) si~_ [~ ( / ix  --x_)/r~l 
t2 = r-~ ~ .~  [Jo(~)] '  sinh (A,/ix/r,) 

where ~ is the nth root o f J l  ( ~ )  = 0. 
Substitutingf~(r) andre(r) defined by equations 

(12) and (13) into equations (20) and (21), the 
solution of  the original boundary value problem 
is obtained as follows: 

t ---- t 1 q- t~ "1 
/ i x - -  2x ( 

= (t o x/Zlx) q- Cto ~-x r[ -- r~ r[ 
4 [',p rl ) 2toC 

~r~ s i n -X -d P  + r ~ 
d r  1 P 

. = l Jo(A.)] ffi sinh A~Ax/r2 
rrlr 2 rl 

r, 

From equation 
obtains 

(14),  (15),  (16)  and  (22),  o n e  

t For example, H. S. Carslaw and J. C. Jaeller, Con- 
duction of Heat in Solids p. 188. Clarendon Press, 
Oxford (1950). 
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f", - 0t 
Q = 1 2 ~ r k r [ ~ - ~  dr 

Jo \ox:~=o 
,,kto,; ; ( - ,; 

= - - ~ - ~ - - ~ I  - -  2 C  \ rl 

4 ~', . z r x -  \ 4AxC 
/ psm- - a p i q -  - -  × 

Irr2 J,, P / rzr| 
(23) 

~ JI(A, rl/rs) [1 Jr- cosh()t.dx/re)] 
x [J,(~,)]'  sinh (a.dx/rz) x 

r, , , ,  
× [ - ~ J ' \  r, / 

÷ 

~rkr|t° [ I ( r] -- r~ 
Q' = ~ [  --2C~- rI -- 

4 [ ' ,  r x )] ~| j,p sin -1 - P dp (24) 

From equations (14), (23) and 24), the value 
of C can be determined. Let 

K . k r ~  
Q = d x  to (25) 

Thus, the values of K in equation (25) are com- 
puted for /Ix = 0.0035, 0.0040 and 0-0045 m 
when rl = 1-85 and r~ = 2.10. The results are 

shown in Table 1 in which the values of C are 
also shown. 

Table 1. The values of  K in equation (25), and of  C 
in equations (12) and (13) which satisfy equation (14) 

~x 
(m) K c 

o 1.ooo - -  
0.0035 1"086 1"621 
0-0040 1.099 1"535 
0.0045 1-109 1"457 

'Since the assumptions of the temperature 
distribution of equations (12) and (13) are not 
reasonable when the value of 4x is too small, 
the calculations were limited t o / i x  >~ 0.0035. 
However, from inspection of the variation of K 
listed in Table 1, it may be assumed that the 
values of K between/ix = 0 and A x =  0-0035 m 
can be correlated approximately by a linear 
function of 4x as follows: 

K ---- 1 + 24"8 Ax (26) 

Consequently, 

Ar~w = K=r[ = (1 + 24.8/Ix) (~rr~) (27) 

where K,/Ix and Ant have dimensions (--), (m) 
and (mS), respectively. 


